Monday, May 16, 2011

Bisection method to find root of the equation (Python)


## module bisection
''' root = bisection(f,x1,x2,switch=0,tol=1.0e-9).
    Finds a root of f(x) = 0 by bisection.
    The root must be bracketed in (x1,x2).
    Setting switch = 1 returns root = None if
    f(x) increases upon bisection.
'''    
from math import log,ceil
import error
 
def bisection(f,x1,x2,switch=1,tol=1.0e-9):
    f1 = f(x1)
    if f1 == 0.0: return x1
    f2 = f(x2)
    if f2 == 0.0: return x2
    if f1*f2 > 0.0: error.err('Root is not bracketed')
    n = ceil(log(abs(x2 - x1)/tol)/log(2.0))
    for i in range(n):
        x3 = 0.5*(x1 + x2); f3 = f(x3)
        if (switch == 1) and (abs(f3) > abs(f1)) \
                         and (abs(f3) > abs(f2)):
            return None   
        if f3 == 0.0: return x3
        if f2*f3 < 0.0: x1 = x3; f1 = f3
        else:           x2 = x3; f2 = f3
    return (x1 + x2)/2.0

No comments:

Post a Comment